Testing various food-industry wastes for electricity production in microbial fuel cell.

نویسندگان

  • Bibiana Cercado-Quezada
  • Marie-Line Delia
  • Alain Bergel
چکیده

Three food-industry wastes: fermented apple juice (FAJ), wine lees and yogurt waste (YW) were evaluated in combination with two sources of inoculum, anaerobic sludge and garden compost, to produce electricity in microbial fuel cells. Preliminary potentiostatic studies suggested that YW was the best candidate, able to provide up to 250 mA/m(2) at poised potential +0.3V/SCE. Experiments conducted with two-chamber MFCs confirmed that wine lees were definitely not suitable. FAJ was not able to start an MFC by means of its endogenous microflora, while YW was. Both FAJ and YW were suitable fuels when anaerobic sludge or compost leachate was used as inoculum source. Sludge-MFCs had better performance using YW (54 mW/m(2) at 232 mA/m(2)). In contrast, compost-leachate MFCs showed higher power density with FAJ (78 mW/m(2) at 209 mA/m(2)) than with YW (37 mW/m(2) at 144 mA/m(2)) but YW gave more stable production. Under optimized operating conditions, compost-leachate MFCs fueled with YW gave up to 92 mW/m(2) at 404 mA/m(2) and 44 mW/m(2) in stable conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell

Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...

متن کامل

Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation

The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different fac...

متن کامل

Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation

The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different fac...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 8  شماره 

صفحات  -

تاریخ انتشار 2010